Chepter 4
4.124 hypotheses $\log _{2} 3$ bits ewch time $\rightarrow 3 \times$ relution \rightarrow at least 3 meighs

4. $2 \quad M\left(X, y=\sum p(x) p(x) \log p(x)+\log p(y)\right.$

$$
=H(x)+H(y)
$$

When XLY
4.363 needs 6 qs:

$$
\begin{gathered}
x \geq 32 ? \\
x / 032 \geq 16 ? \\
\vdots \\
x / 102=1 ?
\end{gathered}
$$

4.4 Reduce by a Factor of $\geqslant 8$ since ASCII doesn't use byte
Y. 5 Connot compress all x uniquely to coles of length $H_{b}(x)$ because then $\left|A_{x}\right|=2^{l}<2^{H_{0}}=\left|A_{x}\right| E$
4.6 For $\delta=1 / 6$ only compress a, b, c, d
S_{δ} smullast $\left\{x\right.$ sit. $\left.\mathbb{P}\left(x \notin S_{\delta}\right) \leq \delta\right\}$

$$
\begin{aligned}
& P\left(x \in S_{\delta}\right)>1-\delta \\
& H_{\delta}=\log _{\delta} S_{\delta}
\end{aligned}
$$

$4.7 \quad \underline{x} \quad n$ flips $w \quad p_{0}=0.9 \quad p_{1}=0.1$

$$
P(\underline{x})=p_{0}^{N-r(x)} p_{1}^{r(x)}, r(x):=x / s \text { in } x
$$

$$
\frac{1}{N} H_{\delta}\left(x^{N}\right) \overbrace{}^{1} \underbrace{N \rightarrow \infty} \leftarrow H(X)
$$

If we allow even a little error, con compress dun to' $H(x)$. Regardless of haw much we allow, cant do better than "H(x)

$$
\longrightarrow \sigma \quad \forall \epsilon \rightarrow \forall \delta\left|\frac{1}{N} H_{s}\left(x^{N}\right)-H\right|<\epsilon
$$

4.8 Charges in P are equal between cusps \Rightarrow \#elomats in H_{s} sades lnemly with log $(-\delta)$

Typicality: $\quad r \sim N_{p_{t}} \pm \sqrt{N p_{1}\left(1-p_{1}\right)}$
Alphabet of I letters w/ probabilities pi

$$
\begin{aligned}
& \Rightarrow P(\underline{x})_{t y p}=P\left(x_{1}\right) \cdots P\left(x_{N}\right)=p_{1} p_{1} N \cdots p_{I}^{p_{I} N} \\
& \log _{2} \frac{1}{P(x)_{t+p}} \approx N \cdot \sum p_{1} \log \frac{1}{p_{i}}=N H(x)
\end{aligned}
$$

Typical elements x have $P(x) \simeq 2^{-N H}$

$$
T_{N \beta}:\left\{\underline{x} \cdot\left|\frac{1}{N} \log \frac{1}{P(x)}-H\right|<\beta\right\}
$$

At any fixed β, T_{N} contains almost at prob as $N \rightarrow \infty$ Asymptotic Equipurtition:

$$
X^{N}=\{\underline{x}\} \quad \text { as } N \rightarrow \infty \quad x \in A_{N} \quad \mathcal{D}^{2} \text { size } z^{N / k_{k}}
$$ with utmost certain probability

Each edo of A_{N} has $p(x)$ "Sse to" $2^{-N H_{x}}$

$$
H(x)<H_{0}(x) \Rightarrow 2^{N H(H)} \ll 2^{N H_{0}(x)}
$$

Equivalent to source coding
(consider only compressing the 2^{NH} bits in the typical set)

Proofs: Lemma (Chebysher)
for $t>0$

$$
P(+2 \alpha)=\frac{F}{\alpha}
$$

Pf:

$$
\begin{aligned}
\sum_{+z \alpha} P(t) & \leq \frac{1}{\alpha} \sum_{\nrightarrow \alpha} P(t)+ \\
& \leq \frac{E}{\alpha}
\end{aligned}
$$

\Rightarrow Cheryscher 2:

$$
P\left[(x-\bar{x})^{2} z \alpha\right] \leq \frac{\sigma_{x}^{2}}{\alpha}
$$

Weak LLN:

$$
\begin{aligned}
& x=\frac{\hbar}{N} \sum h_{i} \\
& P\left[(x-\lambda)^{2} \geq \alpha\right] \leq \frac{\sigma_{x}^{2}}{N_{\alpha}}
\end{aligned}
$$

Take $\frac{1}{N} \log \frac{1}{P(x)}=\frac{1}{N} \sum_{n} h_{n} \quad h_{n}=\log \frac{1}{p(x)}$

$$
\bar{K}=M(x)
$$

$$
\sigma=\operatorname{var} \log \frac{1}{p\left(x_{n}\right)}
$$

$x \in T_{N \beta}$ has $2^{-N(H+\beta)}<P(x)<2^{-N(H-\beta)}$

$$
P(x) \in T_{N \beta} \geq 1-\frac{\sigma^{2}}{\beta^{2} N}
$$

Nest relate $T_{N \beta}$ to $H_{s}\left(X^{N}\right)$
I: $\quad \frac{1}{N} H_{s}\left(X^{N}\right)<H+\epsilon$
The size $T_{\mu \beta}$ gives upper bound on H_{δ} sine $T_{A \beta}$ is not optimized to minimize size

$$
\left|T_{N}\right|<2^{N(H+\beta)}
$$

set $\beta=\epsilon \Rightarrow \delta=\frac{\sigma^{2}}{\epsilon^{2} N} \Rightarrow P\left(T_{H \beta}\right) \geq 1-\delta$

$$
H_{\delta}\left(x^{N}\right) \leq \log T_{N \beta}=N(H+E)
$$

II: $\frac{1}{N} H_{\delta}\left(X^{N}\right)>H-\epsilon$
Assume otherwise. Set $\beta=\epsilon / 2$ S' st. $\left|S^{\prime}\right|<2^{M(H-2 \beta)}$

$$
\begin{aligned}
& P\left(x \in S^{\prime}\right)=P\left(x \in S^{\prime} \cap T_{N \beta}\right)+P\left(x \in S^{\prime} \cap T_{N \beta}\right) \\
& S 2^{N(H-2 \beta)} 2^{-N(H-\beta)}=\frac{\sigma^{2}}{\beta^{2} N} \\
& \leq 2^{-N \beta}+\frac{\sigma^{2}}{\beta^{2} N} \\
& \text { set } \beta=\epsilon / 2 \Rightarrow P\left(x \in \delta^{\prime}\right)<1-\delta \Leftarrow
\end{aligned}
$$

\Rightarrow Any subset of size $|S|<2^{N(H-t)}$ has prob $<1-S$

$$
\Rightarrow \quad H_{\delta}\left(X^{N}\right)>N(H-\epsilon)
$$

$\Rightarrow \frac{1}{N} H_{\delta}\left(X^{N}\right)$ concentrates to H
$\log \frac{1}{P(x)}$ are within ster of $2 N \beta$ of each other as $\beta \rightarrow 0$ need N to gray as $\frac{1}{\beta^{2}}$ to keep $\delta=\frac{\sigma^{2}}{\beta^{2} N}$ fixed

$$
\Rightarrow \beta \sim \frac{\alpha}{\sqrt{N}}
$$

\Rightarrow Most probable will be $\sim 2^{20 \sqrt{n}}$ a the least probable
\rightarrow equipantition in a weak sense
4.9 Not informative about odd one out, but informative
about add is ligat/bet or remy/right etc
$4.10 \quad 3^{4}=81>39 \quad \Rightarrow 4$ weightings
4.11 2 bits of into at each time
Y.12 $123927 \Rightarrow 4$ in total
$4.13 \quad 12$ balls lebcelbed by

$$
\begin{array}{llll}
A A B & A B A & A B B & A B C \\
B B C & B C A & B C B & B C C \\
C A A & C A B & C A C & C C A
\end{array}
$$

pan A pan B
Weightings: 1. $A * *$ vs $B *^{*}$
2. * $A *$ vs * B^{*}
3. $\quad * * A \quad \sqrt{5} * * B$

Each weighting gives A B C
For eek pan bone below conorical
$\Rightarrow 2$ sequences of 3 letters
both CCC \Rightarrow No odd
othemise for just one sf the two pans the sequence is ore of the above romes the pan which is Above or Below depending is its in
par A or B pan A or B
$4.14 \quad 4 \cdot\binom{12}{2}=66.4=264 \Rightarrow\left[\log _{3} 264\right]=6$

$$
8 \cdot\binom{12}{3}=8 \cdot 220=1760 \Rightarrow \log _{3} 17607=7
$$

this answers b)
But if there nus a ranking of odehees \Rightarrow extra foo ${ }^{5} 3$ for 2 halls $\Rightarrow 7$ weighing
extra foctor of $3!+3.2+1 \Rightarrow 13$ $\Rightarrow 13 \cdot 1760 \Rightarrow 10$ weiglings

$$
\begin{aligned}
& N=1 \\
& N=2 \\
& N=3 \\
& N=100
\end{aligned}
$$

4. 17 Bottsman entropy only exists for microcomonical:

$$
S_{\text {Bdt }}=k_{B} \log \Omega
$$

Gibss entropy is a Shonxom entropy of ensemble:

$$
S_{G i b b s}=k_{B} \sum_{i} p_{i} \lg y \frac{1}{p_{i}}
$$

For $P(x)=\frac{1}{z} \exp [-\beta E(x)]$
Fixing $E=E_{0} \pm \epsilon \Rightarrow P(x)=\frac{e^{-p E \pm \epsilon)}}{z}$
\rightarrow If $E(x)$ sppuates into $\sum E\left(x_{i}\right)$ then $S_{\text {suicro }} \approx S_{\text {sebss }}$ as $N \rightarrow \infty$ "seff-averayiry"
4.18 $\frac{1}{z} \frac{1}{x^{2}+1} \Rightarrow z=\pi$

Mean \& vor are unctiried

$$
\begin{aligned}
& z=x_{1}+x_{2} \\
\Rightarrow & P(z)=\frac{1}{\pi^{2}} \int d x \frac{1}{x^{2}+1} \frac{1}{(z-x)^{2}+1}=\frac{2}{\pi} \frac{1}{y+z^{2}}
\end{aligned}
$$

$\Rightarrow \frac{x_{4} t_{2}}{2}$ has cauchy dist w/ sense width
Alternatively $\quad \tilde{P}(\omega)=e^{-|\omega|} \Rightarrow \tilde{P}_{\frac{x+x_{2}}{2}}=\sqrt{e^{-2(\omega)}}=e^{-|\omega|}$
Y.19 Let $t=\operatorname{cosp}(5 x)$

$$
\begin{aligned}
& P(x \geq a)=P\left(t \geq e^{s a}\right) \leq \frac{\bar{F}}{e^{s a}}=\sum \frac{\sum P(x) e^{2 x}}{e^{3 a}}=e^{-s a} g(s) \quad b_{s}>0 \\
t= & \quad \exp (s x) \text { for } s<0 \Rightarrow P(x \leq a)=P\left(t \geq e^{s a}\right)
\end{aligned}
$$

4.20

$$
\begin{aligned}
y & =x^{x} \\
\Rightarrow \log y & =y \log x \\
\Rightarrow & \dot{y} \log y=\log x
\end{aligned}
$$

toke $y=1 / p$
Chapter 5
$5.1 \quad\{0,1\}^{3}=\{000, \quad \cdots, 111\}$
$5.2\{0,1\}^{+}=\{0,1,00,01,10,11, \cdots\}$
5.3 acdbac

a	1	1	0	0
b	0	1	0	0
c	0	0	1	0
d	0	0	0	1

bony!
$5.4\{0,101\}$ Is a prefix coll C_{1}
$5.5\{1,010\}$ is not
$5,6\{0,10,110,111\}$ is
$5.7 \quad\{00,01,10,11\}$ is
C
$5.8 \quad C_{2}$ is uniquely deoduble nontheless
5.9 yes - $\{1,101\}$ \& unively devolable but wot porte
5.10
5.11 $L\left(C_{y}, X\right)$ is 2 bits
$5.12 c_{5}:\{0,1,00,11\}$ has $L\left(C_{5}, X\right)=1.25$
but C_{5} not uniquely dendedule

Proof as Kraft
5.14 Given li satisfying Kraft, can hill a tree eq:
\& $H(x)$ is laver band on $L(c, x)$

$$
\sum_{i} p_{i} l_{i}=\sum_{i} p_{i} \log l_{q_{i}}-\log z
$$

$$
\begin{gathered}
q_{i}=\frac{2^{-l_{i}}}{z} \\
\Rightarrow l_{i}=-\lg z q_{i}
\end{gathered}
$$

$$
\begin{aligned}
& z^{N}=\left(\sum_{i} 2^{-l_{i}}\right)^{N}=\sum_{i, \cdots i N} 2^{-b_{i} \cdots l_{N}}=\sum_{l=N \cdot \ln \text { in }}^{N \cdot \ln A x} 2^{-l} A_{l} \text { works } \\
& 5 N \cdot l_{\text {max }} \\
& \text { z } 1
\end{aligned}
$$

$$
\begin{aligned}
& A_{x}:\{a, b, c, d\} \Rightarrow H_{x}=1.75 \text { bits } \\
& P_{x}: 1 / 21 / 4181 / 8 \quad L\left(c_{3}, x\right)=1.75 \mathrm{bits} \\
& l_{i}=\log _{2}\left(1 / p_{i}\right) \quad \text { for } C_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \geq \sum_{i} p_{i} \log 1 / p_{i}-\log z \\
& \geq H(X)
\end{aligned}
$$

Equality iff $l_{i}=\lg _{2} / p_{i}$
$\Rightarrow l_{i}$ implicity defines $q_{i}=\frac{2^{-l_{i}}}{z}$

$$
H(x) \leq L(C, x)<H(x)+1
$$

Set $\left.l s=\Gamma \log p_{p}\right\rceil$

$$
\Rightarrow \quad 2^{-l_{i}} \leq 1
$$

$$
\Rightarrow L(c, x)=\sum_{i} p_{j}\left\lceil\lg \left(p_{j}\right)\right\rceil<M(x)+1
$$

$$
\Rightarrow L(C, X)=H(x)+D_{R L}(p \| q)
$$

Top-choun caling achieves $L(C, x)=H(x)+2$ bul!
Huftrmen: Priority quelle: Tuke two lavest probs aypend 0,1 to them reep \rightarrow mage and pect buck
5.16 No better symbed code

By contruatiction: tuke a / b whallost probs \Rightarrow equal longith by tuosmen
Aroume there is a better (WLOG proix) code with $l_{a}<l_{b}$
Prefix cole rever has sole mox length law so
\Rightarrow rode c w $p_{c}>\mathrm{pa} \quad l_{c} \geq l_{b}$
suap $a, c \Rightarrow$ expected length decreases \Leftarrow

By contacting the tree apr \＆over you arrive at Hetman

5．17 Con make Mufimen out of English $L \sim Y .15$ disparities between l \＆i p_{i} （both above 玄 below）
9.18

$$
\begin{aligned}
& A_{x}=\{a, b, c, d, e, f, g\} \\
& P_{x}=\{0,24,-05,2,-47,-01,02\}
\end{aligned}
$$

Top down

$$
\Rightarrow 2.53 \text { bits }
$$

Huffman gives 1.97

Huffman is optimal for un ensemble but
a） 1_{1} can change
b） 1 bit overhead is severe
5.19 No 11 \＆ 111
5.20 Yes，ternary prefix

$\begin{array}{ccccccccccc}x^{3} & 000 & 001 & 010 & 100 & 011 & 110 & 101 & 111\end{array} 1 \Rightarrow \begin{array}{lllll}1.598 \\ & 1 & 011 & 010 & 001 \\ & 00000 & 00001 & 00010 & 00011\end{array}$

$$
\begin{gathered}
x^{4} 1333 \text { y } 677 z z z 9 \text { 9 9 1010 } \\
1.9702
\end{gathered}
$$

$5.22\left\{\begin{array}{lllll} & 1 / 6 & 1 / 6 & 1 / 3 & 1 / 3\end{array}\right\}$
$\left\{\begin{array}{llll} & 1 / 5 & 1 / 5 & 1 / 5 \\ 2 / 5\end{array}\right\}$

5.23

$$
\begin{gathered}
p_{1}=p_{3}+p_{y} \\
q^{\prime}=\{1 / 31 / 3 \quad 1 / 61 / 6\} \\
q^{2}=\{2 / 51 / 5 \quad 1 / 51 / 5\} \\
q^{3}=\{1 / 3 \quad 1 / 3 \quad 1 / 3,0\}
\end{gathered}
$$

$$
\text { (if } p_{3}+p_{4}=p_{2} \text { then } p_{1}=p_{2}=1 / 3 \text {) }
$$

convex hull
bic. edges happen from tourane $2 / 3$ in as to els
5.24 should as $95 \mathrm{~W} / 50 \%$ prob
5.25 The saver bound is satisiced w equality
5.26 See rest exercise

5.28 All symbols $1 / \pm \quad I \neq 2^{n}$
f^{+}points assigned value $\left[\right.$by $I 1=: l^{+}$

$$
W A O E=X 2
$$

$n_{+}+n_{+}=I \quad \Rightarrow 2\left(2^{\left.\ln g I_{-} n_{-}\right)}=I-n_{-} \Rightarrow 2^{\left(n_{g} 27\right.}=I+n_{-}\right.$

$$
\begin{aligned}
& \Rightarrow f_{t}=\frac{n_{t}}{I}=2-\frac{2^{l t}}{I} \\
& \Rightarrow L=l^{t}-1+f^{+}=l^{t}+1-\frac{2^{l_{+}}}{I} \\
& \frac{\partial}{\partial I} L-H=\frac{2^{[\log I T}}{I^{2}}-\frac{1}{I} \ln 2=0 \Rightarrow 2^{\lceil\lg I 7 \lg 2}=I
\end{aligned}
$$

row Tl

$$
\begin{gathered}
\Rightarrow I=2^{1 m y+1} \ln 2 \Rightarrow I \approx 2^{\prime \prime} \ln 2 \\
\Rightarrow l_{t}=N \\
N+1-\frac{2^{N}}{2^{N} \ln 2}-\log _{2} 2^{N} \ln 2 \\
=1-\frac{1}{\ln 2}-\frac{\ln \ln 2}{\ln 2} \approx 0.086
\end{gathered}
$$

$5.29 \quad N=1$ Mustman gives $L=1$ but $M(X)=0$ i need $N \neq 1$
Need $P[0 \cdots 0] \sim 1 / 2$ for efficient cade

$$
\rightarrow \quad N \simeq \frac{\log 1 / 2}{\log .19}=69
$$

$\Rightarrow 2^{69}$ entries in the tree

$$
\approx 5 E 20 \text { entries }
$$

pretty apensive
5.30124 (of the form $2^{n \prime}+1$ between 100 \& 200)

Best Strategy is huffman the
\Rightarrow reed 7 tests $w /$ a $\frac{2}{129}$ chance of 8

$$
\Rightarrow 7+\frac{2}{129}
$$

Prof reeds $8 \cdot \frac{128}{129}+7 \cdot \frac{1}{129}=7+\frac{122}{129}$
5.31 Wrac nay: pick symbol w/ pros $p_{i} \&$ pick randan

$$
c_{3}=\begin{array}{l|llll}
a_{i} & c\left(a_{i}\right) & p_{i} & h_{i} & l_{i} \\
a & 0 & 1 / 2 & 1 & \\
b & 10 & 1 / 4 & 2 & \sum p_{i} \cdot f_{i} \\
c & 110 & 1 / 8 & 3 & =1 / 4-1 / 2+1 / 8 \cdot 2 / 3+\frac{1}{8} \\
d & 111 & 1 / 8 & 3 & \sim 1 / 3
\end{array}
$$

Really: $\quad \sum p_{i} F_{i} l_{i}=1 / 2$

Another way: Since $c(x)$ is optimally compressed if $\mathbb{E |} 1 \not 1 / 2$ we call compress further, violating the $H(X)$ lower band
5.32 Some, but now wee gary tree, build up by picking q least
5.33 Meta code 13 imomplete

$$
\begin{aligned}
& x \rightarrow l_{k}(x) \text { under } C_{k} \\
& l^{\prime}(x)=\log k+\min _{k} l_{k}(x) \\
& \Rightarrow z=\frac{\Gamma}{L} 2^{-t^{\prime}}=\frac{1}{k} \sum 2^{-\min l_{k}(x)} \\
& =\frac{1}{k} \sum_{k} \sum_{z \in A_{k}} 2^{-l_{k}(x)}
\end{aligned}
$$

It equality only if all $x \in A_{1}$
≤ 1

Chapter 6

$$
\begin{array}{lll}
P(a)=0.425 & P(b)=0.925 & P(\square)=0.15 \\
P(a / b)=0.27 & P(b / b)=0.57 & P(\square \mid b)=0.15 \\
R(a / b)=0.21 & P(b / b)=0.64 & P(\square / b b)=0.15
\end{array}
$$

$$
\begin{aligned}
& Y(a \operatorname{labs})=0.17 \\
& \text { riploso }-4.62 \quad P(41 / b b b)=0.15 \\
& P(a / \text { tba })=0.28 \\
& P(b 1 \text { tba })=0.52 \quad P(716 b a)=0.15 \\
& b \Rightarrow P(\text { sting }) \in[0.425,0.85) \\
& \Rightarrow 01,10,11 \text { are first } 2 \\
& b b \Rightarrow P(\text { stg }) \in[0.544,0.78) \\
& \begin{array}{l}
\text { bah } \Rightarrow P(\text { striving })
\end{array}
\end{aligned}
$$

G.2 ASCII 128

Huffman starts by communicating 128 ines
l_{i} be as long as 127 or as shat as 1
on average they are $\sim 2-17$
Soy all must be $<32 \Rightarrow$ hauler of size $5 \times 128=640$ hits
Lets say ent/chor ~ 4 if IID
for 400 chars ~ 2240
For shorter, reader dominates
For Laplace, pa start $\sim 1 / 2$ but this deviates after vise For Dirichlet need only ~ 2

$$
\alpha=0.01
$$

IF only a small frution have high $p a \rightarrow$ Dirichlet
it neary unitorm \Rightarrow Loplace
If only $2 / 128$ are used equiprobably
HuFFmun $M_{N} \approx \frac{3}{2} N$

Arithmetic $\approx N \&$ appreciate!
If one char is diproportionate:
thefmen is $H=1$
Arithnetic < 1
6.3 1) 32 bits genented /1 bit actput
2) Noels only $H(0.01) \approx 0.081$ bitslsymb

$$
\Rightarrow \quad 81+2=83 \text { bits for } 1000
$$

jerm
Fluctuctions in \# of $1 s$ produce unation w/ $0 \sim 21$
6.4 Othernise, at fixed longth N w'd have a many-to-one issue.
6.5

$$
\begin{aligned}
& 5 \begin{array}{ccccc}
10 & 11 & 100 & 101 & 110 \\
0 & 4 & 5 & 6 \\
0,00,000,0000,00100000,000000,
\end{array} \\
& (.0)(1,0),(10,0),(11,0),(010,1),(100,0),(110,0)
\end{aligned}
$$

6.6

$$
0,01,010,111,0110,0160,1000,1101,01010,00011
$$

0	λ
1	0
10	1
11	00
100	001
101	mans

$6.7 K$ ones N-K zoros

$$
\begin{aligned}
p(0)=\frac{N-K}{N} \quad p(1)=N \\
p(0 \mid 0)=\frac{k-1}{N-1} \quad p(| | 0)=\frac{k}{N-1} \\
p(0 \mid 1)=\frac{M-K}{N-1} \quad p(| | 1)=\frac{k-1}{N-1} \\
p(0 \mid \cdots)=\frac{N-K+* \text { ons }}{N-n} \\
p(1 \mid \cdots)=\frac{K-* \text { nes }}{N-n}
\end{aligned}
$$

$$
6.8\left\lceil\log _{2}\binom{N}{k}\right\rceil \approx H_{2}(k / N)
$$

Birary string genented by aritmatic cole abwe
6.9 turtiman

Arithatic cale gives N. 0.08
Vamimee is gian by $\operatorname{Var}(\# 1 s)=N$-p (1-p) $\approx 0.01 \cdot \mathrm{~N}$

$$
\begin{aligned}
&\text { lenget is } \operatorname{ler})=r \log \left(\frac{1}{f_{1}}\right)+(N-r) \log \left(\frac{1}{f_{0}}\right) \\
&=r \log \frac{f_{0}}{F_{1}}+N \log \frac{1}{F_{0}} \\
& \Rightarrow \ln \text { is } \pm 3.14 \cdot \log \frac{f_{0}}{f_{1}} \approx 21 \quad \text { for } N=1000 \\
& \Rightarrow 80 \pm 21 \text { bits } \\
& \neq 2
\end{aligned}
$$

6.10 Input ronulom bits into withmotic emadn for spense sama
6.13 lang-rame correlations w/ intervoning fink 2D images
intricate redundemy: (Latex fily, Posstaript)
Mandelhot set
SBIE Ground state of Frustrated Ising undel youlll Celluler automata
$6.14 \quad\left\langle r^{2}\right\rangle \approx N^{2}$

$$
\left\langle r^{4}\right\rangle=\sum_{i}\left|\left(x_{i}\right)^{y}\right\rangle+\sum_{i=i}\left\langle\left(x_{i}\right)^{2}\right\rangle\left\langle\left(x_{j}\right)^{2}\right\rangle
$$

$$
\begin{aligned}
& { }^{2}{ }^{1 z J} \\
= & 3 N \sigma^{4}+N(N-1) \sigma^{y} \\
\Rightarrow & V_{\text {dr }} r^{2}=2 N \sigma^{y}
\end{aligned}
$$

r is concentrated to be within $\frac{2}{\sqrt{N}}$ is of \langle th
6.15 entropy of P is 2.78

Huffman gives the unique answer w/ $L=2.81$
6.16

$$
\begin{aligned}
A_{x}= & \left\{a_{1}, p_{c}\right\} \\
& \{10,10,10\}\}
\end{aligned}
$$

$y=x_{1} r_{2} \quad x_{i} \sim$ ind from A_{x}

$$
M(Y)=2 M(X)=2.1 .295=2.59
$$

Huffman on y gives $L=267$

$$
\begin{array}{rl}
6.17 & 470 \pm \sqrt{100 \cdot 0.1 \cdot 0.9} \quad \log _{2} \frac{f_{0}}{f_{1}} \\
= & 470 \pm 30
\end{array}
$$

6.18 $R=S / L=\frac{\sum p_{n} \log / p_{1}}{\sum p_{n} l_{n}}$

$$
\begin{aligned}
& \Rightarrow \frac{d S L}{d p_{n}}-\frac{\partial L}{\partial p_{n}} S=\mu L^{2} \\
& \quad \rightarrow \frac{d S}{d p_{n}}=\mu L+\ln \cdot R \\
& \quad \rightarrow-1-\log p_{n}=\mu L+\ln R \quad \Rightarrow S=\log z+R L \\
& \quad \Rightarrow p_{n}=\frac{1}{z} \exp [-R \ln] \quad \begin{array}{l}
z=1
\end{array}
\end{aligned}
$$

$$
l_{n}=n \quad \Rightarrow p_{n}=2^{-n} \quad 1 \text { bit } / \text { second }
$$

Finish
$6.19 \log _{2} 52!\approx 226$ sits
6.20

Chapter 7
7.1
a) 8-hit blocks \Rightarrow bose 255
$\Rightarrow \frac{1}{q+1}$ belief that cument char is final one

$$
\begin{aligned}
& \Rightarrow \mathbb{E} \geqslant \text { chars }=256 \\
& \Rightarrow 256 \times 8 \text { bits } \approx 2000 \text { bits }
\end{aligned}
$$

b) 100 k bytes

$$
\begin{aligned}
& 9 \cdot \log q=800 k \\
& \Rightarrow q \sim 2^{15} \text { to } 2^{16} \\
& \Rightarrow 16 \text {-hit books }
\end{aligned}
$$

$7: 2$

$$
\begin{aligned}
& c_{a}(x)=0 \cdots 01 \text { (headless binary) } \\
& c_{\beta}(x)=0000001100010 \text { (headless binary) } \\
& c_{\gamma}(x)=001 \text { z } 11100010 \text { (headless binary) } \\
& c_{g}(x)=01111100010
\end{aligned}
$$

$$
\begin{array}{lll}
c_{3}=\cdots & \| \\
c_{2}= & \cdots & 111 \\
c_{/ 5}= & \cdots & \| 11
\end{array}
$$

7,3 Encode the of levels of recursion that Cu will reed to go through

Then nuder uses CB(N) at each level instecul of $c_{b}(n)$

